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The paper considers the effect of turbulence-induced surface response on the 
sound radiated by a turbulent boundary layer. The analysis is confined to an 
infinite plane homogeneous surface and the conclusions may not be a good 
indication of the behaviour of more realistic structures. The main result of the 
analysis is that no fundamentally more efficient source of sound is introduced by 
the surface motion. The radiation remains quadrupole in character. The surface 
merely accounts for a reflexion of the turbulence-generated sound, with the 
reflexion coefficient being identical to that of plane acoustic waves. Dissipation 
in the surface reduces the magnitude of the image system. A brief discussion of 
the effect on the particular quadrupoles to be found in a turbulent boundary 
layer concludes the paper. There it is argued that the radiation will probably be 
increased by surface motion, but not by an order of magnitude. 

1. Introduction 
The sound radiated by turbulent boundary layers can be affected in two distinct 

ways by any motion of the bounding surface. The most obvious possibility is that 
the surface should act as a sounding board excited by the turbulent pressure 
field, a situation likely to result in a substantial increase in the radiated sound. 
The response velocities would usually remain small in comparison with those of 
the turbulent flow, but the motion is potentially so much more effective as an 
acoustic radiator that it could well overshadow the quadrupoles acoustically 
equivalent to the boundary-layer turbulence. The other possibility would arise 
if the surface response induced a change in the turbulence structure. Then the 
surface could again act as &sounding board, but would be excited by a turbulent 
pressure field modified by the boundary motion in a rather unpredictable way. 
This paper ignores that aspect and deals only with the influence of a compliant 
surface on the radiation field of turbulence that remains unaffected by surface re- 
sponse. The response velocity is therefore considered to be much smaller than that 
characteristic of the turbulence, which is assumed known throughout the flow. 

The new results that are presented seem quite contrary to dimensional argu- 
ments common to the literature on sound radiation from structures excited by 
turbulent flows (e.g. Lyamshev 1961). Those arguments show how surface 
motion, equivalent to a simple source distribution, induces a sound pressure that 
increases in direct proportion to a typical dynamic head of the boundary-layer 
flow. That source, being a fundamentally more efficient radiator than dipoles 
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and quadrupoles acoustically equivalent to a rigid surface near turbulent flows, 
would seem the dominant contributor to any sound field generated by the inter- 
action of turbulence with a compliant surface. For the same reason dipoles on 
rigid surfaces overwhelm any quadrupoles, because of the fundamental difference 
in their radiation efficiencies. It is now well known that that argument is some- 
times misleading; the dipoles tend to do little but reflect the turbulence-generated 
sound on a plane rigid boundary and account for no fundamentally more efficient 
type of acoustic radiation. In  a similar way, it is argued in this paper that surface 
motion, in the particular case of a large plane homogeneous structure, does not 
fundamentally alter the sound from that radiated by the turbulence in free space. 
In  fact, the effect of the surface is shown to be accounted for by a classical 
reflexion coefficient, the responding surface merely accounting for the reflexion 
of a fraction (less than or equal to one) of turbulence-generated sound, but with a 
change in phase. Non-linear terms in response velocity, together with viscous 
effects, distort this property, but nevertheless the surface essentially maintains 
a passive role in the radiation problem. A similar but slightly different result 
holds for the non-propagating near-field. 

The analysis is based on Powell’s (1960) method of manipulating the aero- 
dynamic noise theory due to Lighthill (1952) and Curle (1955). His approach is 
followed, almost exactly, to show how a ‘ pressure-release ’ surface accounts for 
the reflexion of an image of opposite phase and that the surface motion in that 
instance is not associated with any fundamentally more efficient source of sound. 
More general surfaces are treated by an approach which does not appear to have 
been used before in aerodynamic noise theory. The equations are decomposed 
into their spectral form, and the pressures related to particle velocities through 
impedance functions. This technique provides three simple simultaneous equa- 
tions from which the effects of surface pressure and response velocity can be 
eliminated to yield a specific value for the radiation field. The paper is concluded 
with a brief discussion of the influence of surface properties on the sound radiated 
by the various quadrupole terms in boundary-layer flows. 

2. Radiation from boundary layers on compliant surfaces 
Whenever a surface is caused to vibrate, the fluid in its vicinity is set in 

motion and subjected to forces which radiate sound. If the vibration is of low 
amplitude, both the surface velocity and fluid stresses can be assumed to occur 
at the mean surface position. The radiated sound can then be estimated by well- 
established techniques where the compliant surface is replaced by a fixed 
control surface on which the velocity and stresses are set equal to those on the 
real surface. This procedure can be followed in studies of the sound radiated by 
turbulent flow established on plane compliant surfaces, particularly when the 
surface motion is assumed sufficiently small that it  leaves unaltered the turbu- 
lence structure. That is the problem considered here, a problem that is pertinent 
to the mechanism of sound generation by turbulent boundary layers formed on 
flexible structures. 

The equations governing the radiation were written down by Curle (1955) 
who showed, in his extension of Lighthill’s (1952) theory of aerodynamic sound, 
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how surface sources should augment quadrupoles that are acoustically equiva- 
lent to the turbulent volume. Curle’s equation for the radiation field may be 
written in terms of the fluctuating pressure at a point p(x, t )  

qj is Lighthill’s turbulence stress tensor, r is the distance separating the source 
point y from the observation point x ( r  = Ix- yl), pI is the force exerted on the 
fluid in the xi direction by unit area of the boundary surface s, and uui is a velocity 
component. Repeated tensor suffices are to be summed over 1 , 2, and 3. The suffix 
n is not to be summed, it merely implies the component to lie in the direction of 
the outward normal from the volume V bounded by the surface s. The brackets 
[ 3 indicate that the function they enclose is to be evaluated at the source position 
y at the retarded time t - r/u,, a, being the speed of sound in the uniform medium 
where x is situated. That point must lie within the surface s, otherwise the pres- 
sure vanishes identically. This feature is a direct consequence of Kirchhoffs 
theorem that sources enclosed by a surface are fully equivalent to a source dis- 
tribution on that surface, so that, if the surface separates the observation point 
(x, t )  from the turbulence, no sound is heard. It was this property that enabled 
Powell (1960) to demonstrate how, for a plane surface, the surface terms accounted 
for little more than a reflexion of the sound generated in the turbulent volume. 
Powell’s argument forms the basis of this analysis into the influence of surface 
motion on the radiated sound and is repeated here for completeness. 

The real flow containing the observation point (x, t )  lies above the surface s 
that lies at the mean position of the plane surface, a situation illustrated in 
figure 1. In  that flow, a volume V -t is bounded by a closed surface s + which is, 
in part, coincident with the surface s and, in part, sufficiently distant from the 
turbulence that sound has yet to reach it. On the other side of the surface s 
lies a hypothetical image system, a volume V- bounded by the closed surfaces - . 
The observation point (x, t )  is excluded from the image system so that the net 
effect there of sources distributed throughout the volume V -  and the surface 
s - is precisely zero. This point, as Powell remarks, makes it irrelevant that the 
image system is not physically realizable. 

Curle’s equation, when applied separately to the real and image system 
reproduces Powell’s result 

ay i a dY 
[PUiUn - pI] - p(x, t )  = - ~ [T,J - +- - 47raxiaxj 1 C’+ r 47raXJs+ r 
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Outside the turbulent flow, the fluid is assumed to be at rest and uniform 
with the pressure obeying the homogeneous wave equation. 

The surface integrals vanish whenever the surface is in such a rbgime. In  the 
problem of boundary-layer noise the surface integrals over s+ and s- can be 
considered to vanish at all points where those surfaces do not coincide with s, 
the mean position of the boundary surface subjected to the turbulent-boundary- 
layer loading. Several elements in the integrals of equations (2.2) and (2.3) are 

FIGW 1. Diagram illustrating the reflexion properties of a plane surface 
subjected to turbulent flow. 

then identical, a point that Powell demonstrated by breaking down the solution 
to those terms symmetric and those antisymmetric about the surface s. The sym- 
metric terms can be assumed to act on the mean surface s and are the following: 

(2.4) 
dY 

= & $P@"I 7' 

dY 
' S  a 

i a  ay i a 
4n ax, S,, [pva 2)" - P I - = - -- a 4n ax, js - [Pva vw, - pa~ 7 

4n ax, S, [pva vn - pa1 -; 9 

_ _  and 

(2.5) 
i a  dY - 

where a is a tensor suffix implying only those directions that lie in the surface s. 
The antisymmetric term is 
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These relations simplify interpretation of equations (2.2) and (2.3) which can 
now be rewritten 

Addition of these two equations shows how, on a rigid surface, the normal stresses 
account for reflexion that is distorted only by viscous terms. We shall return to 
this point, but for the present we are more concerned with the effects of surface 
response. One such effect is obvious a t  this stage, and follows by a subtraction 
of equation (2.8) from equation (2.7), giving 

Should the surface be sufficiently limp that it can support no normal stresses, 
P, would vanish, so that this equation shows how a flexible surface can provide 
the reflexion of an image of exactly opposite strength, distorted only by second- 
order terms of the surface response. This result seems important because it is 
contrary to the concept that, if a surface is allowed to respond to turbulent flow, it 
will generate sound in a fundamentally more efficient manner than can turbulence 
in association with a rigid surface. A pressure-release surface appears to play a 
purely passive role, and it is of considerable interest to know whether or not sur- 
faces of intermediate properties radiate soundmore effectively. Thisis the problem 
that we deal with next, but, since the situation becomes somewhat more intricate, 
we neglect second-order terms in surface response together with viscous effects. 

3. Surface response and the radiation field 
The neglect of viscous effects and terms that are non-linear in the surface 

response velocity allows the sound field to be described by more tractable 
approximations of equations (2.7) and (2.8) 
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n + is written to signify the outward normal to the surface s + , so that 

ajax,J = ajaxn,J . 
S f  S 

p is the pressure and p is the mean value of the fluid density p. 
The surface responds to the pressure p with velocity v,, so that p and v, 

are related through the surface response equation. In  general, -whenever the 
surface is homogeneous, the response is described by a linear differential equation 
which we can write 

F(u,) being a collection of differential or integral operators, acting on the normal 
velocity v,. It is an important feature of this theory that the operator Fcommutes 
in an interesting way. This can be shown as follows. 

We write the integral involving surface pressure in terms of the surface velocity 
by using the response equation (3.3). The operator F can be written as 

(3.3) P = a(vn), 

where the co-ordinate ya implies some direction lying in the surface s. Then 

The first term on the right-hand side is now treated independently 

This follows by writing Ix-y/ for r,  a step that also allows the right-hand side 
to be rewritten as 

The derivative with respect to ya disappears by integrating the expression 
in the ya direction. Surface terms have already been assumed to vanish at large 
distances, so that equation (3.5) can be rewritten 
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This step can be repeated as often as is necessary to show how the differential 
operator commutes 

Clearly, this property holds for the mixed operator in the third term on the right- 
hand side of equation (3.4), so that that equation can be rewritten 

dY 
4naxn+ r L L/ [v,] - is the velocity perturbation measured in the direction of n + , 
induced by a pressure field 

This is readily demonstrated by applying the momentum equation in the source- 
free space. pa is the pressure described by the surface-velocity term in equation 
(3. l), hence 

is the normal velocity perturbation that pressure induces. Equations (3.3) 
and (3.8) combine to show how the surface-pressure term is precisely equal to 
the pressure necessary to force the surface to respond with the normal velocity 
field associated with the pressure pv in free Aow. That pressure we shall denote 
by P I  i a  dY i a  

pr = --I [p], = .(--I 4naxn+ s [vn]$]. 
4naxn+ s 

(3.9) 

The radiation equations can then be rewritten in a convenient closed form. They 
comprise three simultaneous equations for the pressures p(x, t ) ,  pJx, t) and 

(3.11) 

(3.13) 

(3.14) 

23 Fluid Mech. 22 
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Equations (3.13) and (3.14) are auxiliary equations which may be solved to 
yield the value of p ,  for any particular surface property. For a rigid surface 

dY CqjIr 9 
p =---- 
T 4naxiaxj a2 s v- pv  is zero, so that 

accounting for the reflexion property of rigid surfaces. When the surface is limp 
enough that it appears as a pressure-release condition, p r  is zero, and the surface 
reflects a negative image. Should the surface have properties identical to the 
fluid, pv would equal pr so that the image system would vanish. 

Intermediate surface properties can be described by a surface impedance, but 
since this is a function highly sensitive to changes in frequency and scale, the 
equations have to be rewritten in spectral form. We do this by defining generalized 
Fourier transforms of the pressures that appear in equation (3.11), introducing 
asterisks to denote transformed variables. 

p(x, t )  = f s p . ( x n ,  k,  w )  eiWt eikaxdkdo, 

p ,  (x, t )  = p,* (x,, k, w )  e i W t  e ikeXdkdo, 

p r ( x , t )  = J / p :  (xn,k,W)eioleik.=dkdw, 

k is a two-dimensional wave vector and w is the frequency. 
The response function p = P(v,,) becomes a simple algebraic factor in the 

transformed variables. That factor is known as the impedance which we denote 

(3.18) by z, where 

I n  passive systems, such as the surface considered here, the real part of the 
impedance must be positive. It is related to the direction of power flow, which 
cannot be of a type where the surface does work on the fluid. If there is no dissi- 
pation, the real part of z would be zero since there would then be no power 
flowing from the fluid to the surface. The imaginary part of the impedance can 
be either negative or positive, depending on whether the surface is excited above 
or below the free-wave frequency. 

In  the source frGe flow beyond the turbulence, the normal fluid velocity is 
also linearly related to the pressure, this time by a characteristic wave impedance, 
a quantity we denote by zW. This property enters the problem when we define the 
Fourier transform of the particle velocity un+, induced by the pressure p,: 

(3.16) 

(3.17) 

ss 

p* = zv$+. 

(3.19) 

u,+ = Jk:+ (xn, k ,  w )  eioleikaXdkdw, (3.20) 

p: = -xwu:+. (3.21) 
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Again, since energy flows in the negative n+ direction above the turbulent 
flow, the real part of the wave impedance z, must be greater than, or equal to, 
zero, The Fourier transform of equation (3.14) can now be expressed in a form 
where p: is defined explicitly in terms of the impedance functions and the 

pressurepz p: = zu:+ = - (z/Z,)p:. (3.22) 

Equations (3.11) and (3 .13) ,  when written in terms of the transformed para- 
meter, then yield an explicit expression for the spectral form of the radiated 

pressure : 0 = T-+p: ( l+z / z , ) ,  (3.23) 

(3.24) 

At first sight, this result appears as rather a surprise, for the function of the 
impedance ratio that multiplies T- is nothing more than the reflexion coefficient 
familiar in many kinds of wave problems. It is a simple matter to demonstrate 
that for radiating waves that coefficient cannot exceed unity in absolute magni- 
tude, so that surface sources account for an additional sound that is essentially 
weaker than that of the turbulence alone. It is a surprising result in view of the 
clear possibility that surface motion could induce powerful sources excited by the 
non-radiating turbulent pressure field, a source system potentially vastly more 
powerful than the volume quadrupoles T+ or T-, i.e. the surface might act as a 
sounding board. That this is not the case rests on one essential condition that, 
if violated, would completely change the character of the turbulence-induced 
sound. That is the proviso that the surface motion is completely described by a 
linear differential equation. Boundaries, supports and inhomogeneities of the 
surface structure are thereby excluded. Such structures are known to reflect 
plane waves, as determined by the reflexion coefficient. Since we have decom- 
posed the radiation into a system of such waves by taking the Fourier transform, 
the result seems less surprising, and in fact becomes the obvious answer. 

Again the three limiting conditions are evident. When the surface impedance 
is very high in comparison with the wave impedance, a perfect reflexion is estab- 
lished, so that p* = T+ + T-. When the surface impedance is very much lower 
than the wave impedance, a perfect reflexion, of opposite strength is apparent, 
p* = T+ - T-. However, when the surface impedance exactly equals the wave 
impedance, the image syttem vanishes, p* = T+. The directions of energy flow 
impose restrictions on the values of z and z, that guarantee that cannot be the 
exact negative of zw, so that the possibility of a singularity in equation (3.24) 
as ( 1  + z/zw) approaches zero is avoided. 

Equation (3 .24) ,  when written in terms of the reflexion coefficient R is the 

basic result of this paper: p* = T++ RT-, (3.25) 

where R = (Z-~,) / (Z+Z,) .  (3.26) 

This is an exact equation within the linear and inviscid boundary conditions, 
but it is in the distant radiation field that the result is likely to prove most 
useful. There the three-dimensional Fourier transform of pressure p* is not the 

23-2 
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most significant parameter, and equation (3.25) should be inverted to yield an 
expression for the pressure at a particular point and at a particular frequency. 
The most straightforward way of doing this is to revert to equations (3.11), 
(3.13), and (3.14), and develop them again with that particular object in mind. 
However, the result described in equation (3.25) leads us to expect that surface 
response cannot fundamentally augment the sound power radiated by turbulence, 
and we shall see this more clearly in the section that follows. 

4. The distant sound field of a locally turbulent region 
It is possible, but by no means obvious, that a turbulent boundary layer formed 

on the skin of a large vehicle may appear to a distant observer as similar to 
turbulent flow established on a plane surface. This is the situation we examine 
now. We suppose that the region containing turbulent flow is small in comparison 
with the distance separating the turbulence from a distant observer. We also 
suppose that any flexural surface motion is confined to the vicinity of the turbu- 
lence, as it is bound to be whenever the surface material is dissipative. Under 
these conditions, we may disregard all terms in equations (3.10) to (3.14) that 
fall off with distance more quickly than l/r. Furthermore, we may regard 
arpz, as a directional constant which we will denote by 

pi = ar/axi. (4.1) 

The main analytical simplification that this step induces is that derivatives of 
the pressure pv with respect to the field point x act only on the time, a familiar 
aspect of Lighthill's aerodynamic noise theory 

This far-field property allows the response operator F, as it appears in equa- 
tion (3.8), to be rewritten as a set of time derivatives only 

Again, since the structural response varies with changes in frequency, we can 
advance more rapidly by conducting a spectral decomposition of the radiation 
field into its frequency components. However, in this far-field situation there is 
no need to Fourier synthesize the spatial variation, as was necessary in the pre- 
ceding section. Once more, the differential operator F becomes a simple algebraic 
factor in the transformed variables. I n  fact, that factor is nothing more than the 
impedance z that we have already defined, with the wave vector set equal to a 
particular function of frequency 

This relation is that found in a plane acoustic wave travelling from the turbu- 
lent source in a direction determined by the direction cosines pa. The particular 
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value of x for the plane wave condition of equation (4.4) is the specific acoustic 
impedance of the surface, a quantity usually denoted by z, (e.g. Morse 1948). 
For a particular homogeneous structure, z, is a function of direction and frequency 
only. In  a similar way equation (3.19) can be rewritten for the far-field case 

Then the spectral component of normal velocity is related to the pressure 
through the acoustic wave impedance, the particular value of z, when 

a value we denote by zw,. 
The far-field analysis at a particular frequency is then identical to that of the 

preceding section. We define Fourier transforms of the pressures that feature 
in the radiation equations, but only the temporal parameter is decomposed, the 
asterisk again denoting a Fourier transform. Equations (3.11), (3.13), and (3.14) 
then become 

kn+ = - (wlao) Pn+, 

p*(x ,w)  = ~+(x,w)+Pp,*(x,w)+P~(x,w), (4.6) 

0 = T-(x ,o) -pr*(x ,~)+P) ,*(x ,w) ,  (4.7) 

pp,*(x,w) = -""p,,*(x,u). 
ZUJ, 

The pressures p$ and p),* can be eliminated from these equations to show how 
the sound radiated to a distant point x, at frequency o, is determined by the free 
turbulence and the surface-reflexion coefficient for plane acoustic waves R,, 

(4.9) 

(4.10) 

The acoustic reflexion coefficient R, cannot exceed unity in absolute magnitude, 
so that the sound radiated to large distances from the flow can never exceed 
that due to the sum of the real and image flow turbulence with some phase 
difference determined by the surface response. The non-propagating near pressure 
field is thus unable to use the homogeneous surface as a sounding board to aug- 
ment the total radiation in any fundamentally more efficient way. The sound 
remains quadrupole and increases with the eighth power of a typical flow velocity, 
a result that is in sharp contrast with the usual argument that surface motion 
induces equivalent simple sources and a sound increasing with the fourth 
power of velocity. More complex structures may indeed behave in that way but 
plane homogeneous surfaces play an essentially passive role in the problem of 
turbulent-boundary-layer noise. 

5. Conclusion 
The main results of the paper are that the influence of a large, plane, homo- 

geneous boundary supporting turbulent flow is simply to 'reflect' the quadru- 
pole sound generated by the turbulence. The reflexion coefficient is real for propa- 
gating waves but may have positive or negative values depending on the surface 
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properties. Consequently, the presence of the surface does not fundamentally 
increase the efficiency of acoustic radiation by turbulent flow. For non-propa- 
gating components of the pressure field, the reflexion coefficient may be complex, 
and an increase in the near-field pressure may result from surface motion. 

In  applying this result to the boundary-layer case, it is pertinent to consider 
how relevant the large, plane, homogeneous boundary can be to practical 
problems. Stiffened, or locally supported structures, do not fall within this eate- 
gory, and these conclusions may prove quite misleading in some cases of practical 
interest. However, should homogeneous panels be large enough to support 
free waves devoid of significant modal structure, the vibration field could be 
regarded as occurring in an infinite panel without incurring appreciable error. 
To comply with this condition, the product of the loss factor with panel area 
should greatly exceed that of perimeter with wavelength, so that waves decay 
within a distance smaller than the typical panel scale and are not reflected to 
form a standing-wave, or modal, component. 

Even though the possibility of surface motion implies no fundamentally more 
efficient method of sound production, i t  is likely to lead to a slightly greater 
acoustic output from a turbulent boundary layer. This is because the most power- 
ful sources, the lateral quadrupoles associated with the high mean-velocity gradi- 
ent (Lighthill 1954), are opposed by their images when the reflexion is complete, 
as it is in the case of a rigid surface. As the reflexion is changed, in either phase 
or magnitude, the cancellation becomes less complete, and these relatively 
powerful sources soon make themselves felt on the radiation field. However, it  
is unlikely that any practical situation should arise in which quadrupole radiation 
plays a crucial role. There would inevitably be other, more powerful, sources 
induced by either small-panel motion, or dipole systems near surface discontinu- 
ities, that would mask the quadrupoles of the turbulent volume-but that is 
really the main point of this paper. The possibility of powerful sources being 
associated with plane homogeneous surfaces is shown to be without a rigorous 
foundation and that the emphasis in flow-noise studies should be put elsewhere, 
where sources of fundamentally higher efficiency are to be found. 

This work was carried out a t  Bolt, Beranek & Newman Inc. under the Bureau 
of Ships Fundamental Hydromechanics Research Programme, S-ROO90101, 
administered by the David Taylor Model Basin. 

REFERENCES 

CURLE, N. 1955 The influence of solid boundaries upon aerodynamic sound. Proc. Roy. 

LIGHTHILL, M. J. 1952 On sound generated aerodynamically. I. General theory. Proc. 

LIGHTHILG, M. J. 1954 On sound generated aerodynamically. 11. Turbulence as a source 

LYAMSEIEV, L. M. 1961 Sound radiation from elastic shells excited by turbulent rtero- 

MORSE. P. M. 1948 Vibration and Sound. New York: McGraw Hill. 
POWELL, A. 1960 Aerodynamic noise and the plane boundary. J. Acouat. SOC. Amer. 32, 

SOC. A, 231,412. 

Roy. SOC. A, 211, 666. 

ofsound. Proc. Roy. SOC. A, 222, 1. 

dynamic flow. Xov. Phy8. Acowt iw,  7, 1. 

8, 982. 


